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Abstract. New hybrid weighted-density approximations (HWDA) based an both local and 
global average densities are proposed. In one of the approximtions the weighting function 
is constructed to satisfy the same homogeneous properties as the local weighted-density 
approximation (LWDA) proposed by Tanrona, in the other, the weighting function is consuueted 
to agree with that of Leidl and Wagner for the homogeneous fluid, Free energy functianals arr 
derived from these proposed weighted-density approximations by using expansions in term of 
the density. They are applied to predict the density profiles of hard-sphere fluids restricted by 
hard and permeable walls and in spherical cages, For the density profiles of fluids confined 
between hard Rat walls, the results are in good agreement with the computer simulations and 
comparable with those of the free energ). functiooal approximation of ‘Tarawna even at the high 
density po3 = 0.9135. For the density profiles of h&-sphere fluids restricted by permeable 
walls with a finite height and in spherical cages, the results are also in good agreement with 
the computer simulations. These results show that although the free energy functionals differ, 
the new approximations and LWDA produce equally accurate results for the inhomogeneous 
hard-sphere fluids investigated. The new approvtmalions have the advantage of being simpler 
to apply. 

1. Introduction 

Over the past decade there has been considerable progress in the density-functional 
theory of inhomogeneous classical fluids. Many different types of density-functional 
approximation 11-81 have been proposed to describe the problems of inhomogeneous 
fluids of various sorts. These applications have been both qualitatively and, to varying 
degrees, quantitatively successful. Among these approximations, the weighted-density 
approximations developed can be generally categorized into three kinds of weighted density 
approximation: (i) weighted-density approximations based on a local averaged density called 
LWDA [Z. 3,561 here, (ii) weighted-density approximations based on a globally averaged 
density (GWDA) [7],  and (iii) hybrid weighted-density approximations (HWDA) based on 
both a locally weighted density and an additional globally averaged density [4]. 

It is generally known [l] that in actual applications of classical fluids the widely 
used weighted-density approximation (LWDA) was proposed by Tarazona yields very good 
results. It suffers, however, from two disadvantages: (a) in its pure form, it is not possible to 
derive an analytic weighting function which gives rise to a given direct correlation function, 
c(’)(r, p ) ,  such as the PY function, and @)even when an analytic weighting function is used, 
the calculation of density profiles of the inhomogeneous fluid is computationally intensive. 
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To overcome the first disadvantage Tarazona and coworkers [6] expanded the weighted 
function in powers of the density and obtained an approximation to the direct correlation 
function which was good as long as the reduced density of the bulk fluid was less than about 
0.9. The computcr time is reduced by the HWDA but this approximation is less successful 
in the prediction of the density profiles. 

The key to the success of Tarazona’s approximation appears to lie in the choice of 
weighted function. We have therefore tried to find a good compromise between Tarazona’s 
approximation and the other weighted-density approximations by seeking a new HWDA 
which uses Tarazona’s weighting function but involves less computation. The consequences 
of this approximation for the density profile of an inhomogeneous fluid are compared 
with Tarazona’s and with simulation results for the problems of hard-sphere (HS) fluid 
confined between hard walls and permeable walls, At the same time we have investigated 
a modification of the IIWDA of Leidl and Wagner [4] and its consequences for the same 
problems. 

In section 2, we consider the explicit forms of the density functionals and the weighting 
functions used in the various approximations. In section 3, we derive the density profiles 
of hard-sphere fluids confined between hard flat walls. We compare the results of the 
approximations to those of computer simulation. In section 4, we apply the approximations 
to calculate the density profiles of the hard-sphere fluids restricted by permeable walls of 
thickness of the order of a molecular diameter, in which the permeable walls are represented 
by the barriers with a finite height [9. IO]. We again compare our results with those of 
computer simulation. Section 5 contains a similar comparison for fluids confined to spherical 
cages. A brief discussion of the strengths and weaknesses of the various approximations is 
included in the conclusion. 

2. The density functionals and weighted functions 

In all the cases we consider, the free energy functional can be written as an ideal gas part 
plus an excess contribution F [ p ] ,  originating from the particle interactions 

FIpl = B-’ j d r  P ( T N ~ [ P ( W ~ I  - 11 + F[pleZ 

F [ P L  = j d r  p(r ) f (P( r ) )  

(1) 

where ,3 is the inverse temperature and A the de Broglie thermal wavelength. In the 
weighted-density approximations the excess contribution is assumed to be of the form 

(2) 

where f ( p )  is the excess free energy per particle for the bulk fluid of density p and the 
weighted density j ( r )  is given by 

, 
b(r) = d s p ( s ) o ( r  - S ,  B(r)); (3) 

the weighting function w ( r  - s, p )  is related to the direct correlation function of the fluid 
through the second derivative of the excess free energy with respect to the density: 

Equation (4) is used only after the density has been made uniform. 

correct, that 
In the homogeneous state where no averaging is necessary one requires, for (2) to be 

P = b = p .  (5 ) 
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Hence 

d r o ( r , p )  = 1. (6) J 
The differences between the functionals arise from the different definitions of the density 
B(r) on which the weighting function depends. We consider these in turn. 

2.1. The LWDA of Tarazona 

For this approximation 

B(T)  = P(r). 
Then equation (4) becomes explicitly 

c(’)(P - S, p )  = -2Bf ’ (p )w(r  - S, p )  - pPf“(p) d t o ( r  - t. p)w(t  - S. p )  s 
(7) 

-pSf’(~) dt [o’(T - t ,  p ) w ( t  - 8 ,  P )  + @(T - t ,  p)u’(t  - S ,  P)I (8) 

where o’ and f’ indicates differentiation with respect to the bulk density and p = pb.  
(1)-(8) constitute the LWDA proposed by Tarazona and extended by Curtin and Ashcroft. 
In practice, even if &(T, p )  can be given explicitly as a function of r and p ,  the weighting 
function, which satisfies (6) and (S), cannot. This increases enormously the complexity of 
calculations which use this approximation. In order to avoid this Tamzona and coworkers 
[6] have proposed an expansion for w(r,  p )  of the form 

s 

m(r, P )  = + 01 ( r ) p  + oz(r)p* (9) 

where 

e(u - r) 
3 

wo(r) = - 
4au3 

W I  (r)  = 0.475 - 0.648 + 0.1 13 - El [:I’ r e u  
r 2  

= 0.288 [f] -0.924-to.764 [‘I - 0.187 [-] U er e 20 
U U 

and 

where e ( x )  is the Heaviside step function and U the hard-sphere diameter. Substituted into 
equation (8). one obtains an approximation for c(’)(T. p )  which is good up to a reduced 
density of - 0.9. 

2.2. A new HWDA 

The object of this approximation is to use a simpler approximation for b(r) than equation (7), 
but to simplify in such a way that the weighting function still satisfies (8). This can be 
achieved by taking it to be the global average defined by 

b(r) / d s  P ( S ) W ( r  - S, p b )  (13) 
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where pb is the bulk density. This is simpler to use than equation (7) because it provides 
an explicit definition for b(r). (7) provides a circular definition because b(r)  depends on 
p(r) which itself depends on $(r).  Thus p(r) has to be found self-consistently. Because 
the weighted function still satisfies equation (8), one can use Tarazona's solution as given 
by equations (9Hl2). 

In density-functional theory, the equilibrium particle density distribution is, in general, 
found by minimizing the grand potential functional Q [ p ]  with respect to variations in p ( r )  

where p is the chemical potential of the system and ueXxI(r) the external potential. From 
(1) and (14), one obtains 

j ? ~  - ,WX'(r) = I n p ( r )  - c( ' ) (r;  [ p ] )  (15) 

where c( ')(r;  [ p ] )  is the one-particle direct correlation function 

and 

 pi(^)= dsp(S)mj(r-S) i = O , 1 , 2 .  (20) s 
In a homogeneous state P(T)  = B(r) = pb, equation (16) yields for the chemical potential 

BP = l npb  - c(')(Pb) 

c")(pb) = - B f ( p b )  - /@bf'(L'b). 

(21) 

where 

(22) 

Combining (15) and (21) and eliminating the chemical potential p, we have the density 
profile equation 

p ( r )  = p~exp[--guex'(r) + c(I)(r;  [ P I )  - c( l ) (pb) ] .  (23) 

The density profiles were obtained by numerical iteration between the old density profiles 
on the right-hand side and the new one on the left-hand side of equation (23). 
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2.3. A new global hybrid weighted-density approximation (GHWDA) 

This density functional is based upon that due to Leidl and Wagner [4]. A simplified version 
based upon an expansion of the weighting function in powers of density akin to Taramna's 
expansion has already been proposed and explored by Lee er nl [ 1 I]. In this paper, we 
propose a further simplification, similar to that in subsection 2.2, which leads to an explicit 
formula for the average density which exploits the weighting function of Lee et al. 

For the new functional, we take B(T) to be the globally averaged function 

$ ( P )  = E d r p ( r )  d s p ( s ) w ( r  - 8; pb) (24) 

where N is the number of particles. Then, from the definition of c(')(T - s. p )  we simply 
obtain the same relationship with the weighted function as given by Leidl and Wagner 141, 
namely 

c(')(T - s, p )  = -2pf ' (p)o(r  - s, p )  - pPf"(p) S d t w ( r  - t ,  p)w(t - s, p) .  (25) 

In the homogeneous fluid, the average densities will equal the bulk density and the 
weighted function will again be normalized by equation (6). One can easily check that the 
proposed weighted-density approximation exactly generates the same higher-order direct 
correlation functions c(")(T, . . . , t ,  p )  [4,12,13] as those of the HWDA of Leidl and Wagner 
because in the thermodynamic limit 

' S  J 

On the other hand, it is expected that in applications such as to the properties of 
inhomogeneous classical fluids the proposed weighted-density approximation will give 
different results from the HWDA of Leidl and Wagner because of the different average 
density. To reduce the computational problem in actual applications, we use the weighted 
function derived from the density expansion method by Lee et a1 [ l l ] .  In this case, the 
weighting function is given by 

w(r ,  0) = w(r) + w ( r ) p  + wz(r)p2 + w ( r ) p 3  (27) 

with the coefficients 

6'(u - r )  
3 

wo(r) = - 
4lrL73 

81 1 r 3  5 
o j ( r )  = -(:-[;I+ 128u3 -[-I 12 U ) - - 16 

r c u  

=--('-[;]+-[-I) 15 1 r 3  u c r < 2 u  
128~7~  12 U 

= o  r > 20 

+ [:(A)* + (n) + 2 (  N) + i( R)]~(O - r )  

+--nu3( 11481 A) -;(A)' 
115200 



8058 Soon-Chul Kim et a1 

where we have used the graphical representations of the Mayer-Montroll formalism [14]; 
O ( x )  is the Heaviside step function and a is the hard-sphere diameter. Taken together, 
equations (24)-(31) constitute the GHWDA derived from the proposed weighted-density 
approximation. In this approximation, the density profiles are again obtained as solutions 
to equation (23) with the one-particle direct correlation function defined by (16). but 
equations (17)-(19) are replaced by 

where the locally weighted density P(r) is simply given by 

b(r) = P O ( 4  + Pl(r)b + "b2 + p3(r)63 (33) 
and 

(34) 
- 1  
P = - / dsp(s)[po(s) + PI(S)P~ + PZ(S)P; + PJ(S)P~~ I .  N 

3. Density profiles of hard-sphere fluids confined between hard flat walls 

As a simple application of the new functionals, we apply them to derive the density profiles 
of a hard-sphere fluid confined between two hard, parallel and structureless walls. Because 
of the symmetry of the problem, all quantities depend upon only one coordinate, say z .  
and not on x ,  y ,  where the z = constant planes lie parallel to the walls. Hence, p = p(z), 
p = p ( z ) ,  etc. Then, the weighting function w(z )  is given by 

W ( Z )  = dr dyw([x2 i- yz + ~ ~ 1 ' ~ ) .  (35) 

p(z) = pbexp[c(')(z; [P I )  - C " ) ( P ~ ) ]  

s 
The density profile equation with a hard wall situated at the origin is given by 

(36) 
z 5 012 

= o  z cu /2 .  

Three sets of densities, pu3 = 0.715,0.183 and 0.9135 are investigated in this work for 
the density profiles of the hard-sphere fluid. In applying (36) together with equations (16) 
and (22), the excess free energy per particle of the hard-sphere fluid, f ( p ) ,  is taken according 
to the quasi-exact Carnahan-Starling equation of slate [15] 

where 1 = irpo3/6. 
The resulting density profiles are displayed in figures 1-3, and compared with the results 

of the LWDA of Tarazona and computer simulation [ 161. Because of the symmetries of 
the density profiles, we show the density profiles only to one side of the wall. The origin 
for the coordinate z is at the closest distance of approach of a molecule to the wall. In 
fact, the results from the two new weighting approximations are so close to each other 
that they cannot be distinguished in the figures and only those due to the HWDA (case B) 
are displayed. As can be seen from figure 1, at pa3  = 0.715 the hard-sphere oscillatory 
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2 
1 

0 0 
0 1 2 3 0 1 2 3 

z z 
1. Density Profile of 3 hwd-sphere fluid Figure 2. Same figure I except that p d  = 0.813. 

confined in hard flat walls (po3 = 0.715). The open 
circles n e  from the computer simulations [IO].  The 
solid and dotted lines correspond to the LWDA of 
Tarazona and our approximation. respectively. Notice 
here that our approximation is indistinguishable from 
the LWDA of Tanzona 

structures are well reproduced when compared with simulation results. Notice here that 
the HWDA is indistinguishable from Tarazona's approximation. At pus = 0.9135 the 
deviation from the simulation results becomes, as expected, more marked; the position of 
the first peak is slightly shifted and the first oscillation is slightly underestimated. In this 
case too, the HWDA is almost indistinguishable from the approximation of Tarazona, with 
the differences being small. The surprising feature of these results is how close the results 
of the HWDA are to those calculated via Tarazona's functional. The overall picture shows 
that the HWDA describes the inhomogeneous properties of the hard-sphere fluids well. 

4. Density profiles of hard-sphere fluids restricted by permeable walls 

As a second application of the HWDA, we consider density profiles of hard-sphere fluids 
restricted by permeable walls. For the wall-fluid potential, we have used the same potential 
as Powles and Pagoda [9,10]. In this case, there is an infinite m a y  of semipermeable walls 
uniform and stretching to infinity in the x and y direction with a separation h between the 
central planes of neighbouring walls. Then, 

where H is the height of the barrier and o the width of the barrier. In practice, it is only 
necessary to determine the density profiles of hard-sphere fluids in the range 0 < z < hj2.  
The required values outside this range are then given by the symmetry of the problem. 
Because the wall has a finite height, H, there is a finite probability of finding a tnolecule 
within the wall and this depends on the temperature ksT. Thus, although the fluid comprises 
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Figure 3. Same as figure 1 except that p r 3  = 0.9135. Figuw 4. Density Profile Of a h d - s p h a e  fluid 

restricted by permeable walls. po3 = 0.50364. H = 
2.0 and w = 0.5. The open circles are from computer 
simulation 1161. The solid and dolled lines correspond 
lo the LWDA of Tmazona and our approximation, 
respectively. Notice thJf our approximation is Amos? 
indistinguishable from the LWDA o f  Tarmna. 

hard spheres, the density profile will depend on the temperature. Then, the density profile 
equation is 

(39) 
Since the lengths in the problem can be measured in  terms of a molecular diameter U ,  

and energies can be measured in terms of ksT ,  the problem is characterized by the three 
reduced parameters 

p(z) = pbexp[-gu"'(z) + c"'(z; [PI) - c%dI o c z c h.  

As these are the only parameters used in the remainder of this paper we drop the 
asterisks. To obtain results to compare with those in [lo] h is chosen as h = 16. With 
this value for h, the hard-sphere fluid is essentially homogeneous midway between two 
permeable walls and the shape of the density profile is unaffected by the exact value h. 

The resulting density profiles for the hard-sphere fluid are displayed in figures 4-8, and 
compared with the results of the LWDA of Tarazona and computer simulation [IO]. Again. 
the results of the two new approximations are so close to each other that only those from the 
HWDA are displayed. As can he discerned from figures 4-8, over most of the range of the 
parameters, the HWDA reproduces the density profiles of hard-sphere fluids very well when 
compared with the computer simulations. Also over most of the range of the parameters 
the HWDA is indistinguishable from the LWDA of Tarazona although we can see slight 
differences between two approximations in figures 4 and 5. Even though we do not show 
the density profiles for other density-functional approximations for clarity, the comparisons 
show that the HWDA gives better results than the other density-functional approximations 
which were tested by Marsh eral [lo]. Once again, the overall picture shows that over most 
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Figure 5. Same as figure 4 but with the panmeters 
pa3 = 0.8022, H = 1 and w = 1. In this case, 
some difference between the LWDA of Tarzzona and 
our approximation can be seen. but it is very small. 

z z 
Figure 6. Same as figure 4 but with the parameters 
pc3 =0.8046, H = 2  and o = 1. 

1 .O 1.4 
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1 .o 
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Figure 7. Same as figure 4 but with the panmeters 
pc3=0.5142. H = 3 a n d o = l .  

Figure 8. Same as figure 4 but with the parameters 
pa3 = 0.7099, H = 3 and o = 1. 

of the range of the parameters the HWDA describes the structural properties of hard-sphere 
fluids restricted by permeable walls very well. 

5. Hard-sphere fluids in a spherical cage 

The GHWDA becomes identical to an approximation already discussed by Lee ef a1 [ l l ]  
for systems with a planar geometry. However, this is no longer the case in a spherical 
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geometry. To test whether the two produce similar results in such a geometry, we have 
studied the profile of a hard-sphere fluid confined to a spherical cage with a hard wall and 
radius R -I- u p  In this case, the resulting density profile satisfies the equation 

p(r)  = pbexp[c(')(r; [PI) - c(')(pdl r R 

.. 

(41) = o  r > R. 
Two bulk densities (pus  = 0.62 with N = 277 and pu3 = 0.75 with N = 342) 

have been investigated. In figure 9 we compare the result of the GHWDA with computer 
simulation at the higher density; it can be seen that the agreement is very good, comparable 
with that provided by the earlier and more complex theory 1111. Comparable agreement is 
found at the lower density. 

Figure 9. Density profile of U hm%sphere fluid confined within a spherical cage with a hard 
structureless wall (pn3 =0.75). The open circles are from computer simulation I211. 

6.  Results and discussion 

We have proposed two new weighted-density approximations based on local and global 
average densities and have implemented than using density expansions for the weighting 
function. The main advantage of the new approximations is that they are computationally 
much simpler to use than the LWDA because of the analytic form of the weight function. 
We have applied the approximation to calculate the density profiles of hard-sphere fluids 
confined in certain types of pore and have compared our results both with those of other 
model approximations and with computer simulations. For the particular problems studied 
the two approximations give almost identical results. 

For the hard-sphere Buid confined between planar hard walls, the results are almost 
indistinguishable from those of the LWDA of Tarazona, although at the highest density 
investigated the new approximation is in closer agreement with simulation. 

When the walls are permeable, the new approximations produce profiles again almost 
indistinguishable from that due to Tarazona's theory except near the centre of a permeable 
wall. In this region, Tarazona's theory agrees better with simulation. 

The GHWDA approximation has been applied to a hard-sphere fluid confined to a 
spherical cage and again the profile agrees very well with the simulated one. From the 
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various applications we conclude that the new approximations provide nearly as reliable 
density profiles as Tarazona's LWDA. They have the advantage of being less intense 
computationally. 

One can calculate the higher-order direct correlation functions, c(")(T,  s, . . . , t ,  p ) ,  from 
the HWDA by taking the functional derivative of the free energy functional with respect to 
the density [ 12,13,17,18]. It is expected that in the homogeneous state the higher-order 
direct correlation functions derived from the HWDA will be different from those of the 
LWDA since 

On the other hand, the free energy functional approximation presented here can generally 
be used as a reference system for a perturbative analysis of bulk hard-sphere systems and 
can be applied to the liquid-solid freezing transition of other systems such as Lennard-Jones 
fluids; such systems with soft repulsions are notoriously difficult to study vis-b-vis freezing 
transitions and constitute a stern test for any theory [19,20]. Therefore, we intend to use 
the proposed HWDA to study the homogeneous and inhomogeneous properties of liquids 
as well as the freezing problem of classical fluids. We hope to investigate these problems 
in the near future. 
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